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EEG CorrElatEs of fluCtuation in CoGnitivE PErformanCE  
in an air traffiC Control task

INTRODUCTION

Mental fatigue, defined as the inability of the human brain to 
allocate sufficient resources to perform a task at normal capacity 
(Smit, Eling, & Coenen, 2004), can impair a variety of cognitive 
functions that are vital in performing a task effectively (Bills, 
1931; Lorist, Klein, Nieuwenhuis, De Jong, Mulder, & Meijman, 
2000; Sanders & Hoogenboom, 1970). Hence, it is desirable 
to study the effects of mental fatigue and its impact on human 
performance and work routines. Mental fatigue that happens after 
hours of work, known as the time-on-task effect, can significantly 
impact vigilance (Mast & Heimstra, 1964; Smit et al., 2004), 
problem solving capability (Horne, 1988; Van der Linden, Frese, 
& Meijman, 2003) and situational awareness (Vidulich, Stratton, 
Crabtree, & Wilson, 1994), which are the basis for completing 
most real-world tasks successfully. Mental fatigue is of special 
concern for air traffic control specialists (ATCSs) due to their 
cognitively demanding workload and public safety factors. Air 
traffic control tasks require ATCSs to maintain a constant focus 
with high reliability and to use multitasking capabilities to pro-
cess information from a variety of sources for considerably long 
durations (Kallus, Van Damme, & Dittmann, 1999). ATCSs stay 
in the forefront of air traffic flow control and communicate vital 
information such as the proximity of other aircraft, the impact 
of weather, and the status of runways. These tasks require high 
levels of cognitive ability and endurance to complete. Performing 
these tasks for long hours can potentially result in mental fatigue 
that could be a hindrance to task completion. Since these tasks 
require high reliability to keep the passengers on board safe, 
understanding how controllers’ mental functions are affected is 
essential to maintaining safety. 

Modern physiological measures such as electrocardiography 
(ECG), respiration, eye blinks, and electroencephalography 
(EEG) have been proven more reliable and effective in monitor-
ing fatigue (Brookings, Wilson, & Swain, 1996; Han, Wang, 
L., Wang, P., & Wen, 2005) in real time rather than subjective 
measures. Among these physiological measures, EEG has been 
used more extensively in recent times due to its non-invasive 
nature, high reliability (Lal, Craig, Boord, Kirkup, & Nguyen, 
2003; Murata, Uetake, & Takasawa, 2005), and reproducibility 
(Lal & Craig, 2005). EEG power spectral measures are reported 
to produce patterns that can be used to identify changes in alert-
ness (Makeig & Inlow, 1993; Makeig & Jung, 1995).

Researchers have identified EEG fluctuations correlated to 
performance deficits (Jung, Makeig, Stensmo, & Sejnowski, 1997; 
Kilmesch, 1999; Kilmesh, Doppelmayr, Russegger, Pachinger, & 
Schwaiger, 1998; Lal and Craig, 2002, 2005; Makeig & Inlow, 
1993; Makeig & Jung, 1995). Event-related potentials (ERPs), 
small blocks of mean EEG phase-locked to the onset of stimuli, 

have shown significant patterns corresponding to performance 
change and mental state shift (De Lugt, Loewy, & Campbell, 
1996; Pfurtscheller, 1992; Pfurtscheller & Aranibar, 1977; 
Neuper & Pfurtscheller, 2001). Another way of identifying 
EEG patterns is by using time-frequency analysis. This method 
has shown significant increases in alpha and theta powers, time-
locked to stimulus presentation (Kilmesch, 1999; Akerstedt & 
Gillberg, 1990; Torsvall & Akerstedt, 1987).

Most of these research studies on mental fatigue use either 
event-driven hour-long tasks (Huang, Jung, Delorme, & Makeig, 
2008; Jap, Lal, Fischer, & Bekiaris, 2009) or considerably long-
duration tasks, focused on effects of monotony or workload 
changes from EEG data analysis. Only a very few studies have 
focused on determining the effects of mental fatigue and physi-
ological markers for mental fatigue in real-world work scenarios. 
In our research, we approached the problem of mental fatigue 
by correlating the performance changes with EEG patterns 
that represent the development of mental fatigue over time. 
We conducted four experimental sessions using simulation 
tasks from a low-fidelity air traffic control software package, 
i.e., C-Team (Bailey, Broach, Thompson, & Enos, 1999), with 
increasing work time, ranging from one half hour to two hours, 
for determining the amount of change in performance and EEG 
patterns associated with mental fatigue over time. This provided 
a better means to understand the effects of fatigue over different 
intervals of time and their effect on brain functions.

Furthermore, it is essential to determine the relationship 
between cognitive performance changes and EEG patterns 
indicative of mental fatigue to develop a reliable method for 
detecting time-on-task fatigue in real time. To achieve this, we 
hypothesized that a prominent change in EEG spectral power 
can be a marker for change in mental state, as reported by other 
studies (Gevins et al., 1995; Wilson & Russell, 2003). Since our 
method provides a means for continuous evaluation, our findings 
can be valuable in the design of continuous fatigue monitoring 
models, in contrast to earlier neural network models focused on 
fatigue prediction based on ERPs (Murata et al., 2005).

In summary, we conducted a study to investigate continuous 
EEG spectral power changes that are correlated with perfor-
mance change during a low-fidelity air traffic control task. To 
determine EEG spectral power changes, we conducted a power 
spectral analysis and implemented a non-parametric statistical 
approach on the EEG data collected from four experimental 
sessions (30, 60, 90, & 120 minutes). Next, we computed differ-
ent performance measures such as response time, routing time, 
number of crashes, and number of warnings from the C-Team 
data. A correlation between EEG spectral power changes and 
performance data was then established by comparing significant 
changes observed in these data and their occurrences over time.
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METHOD

Participants
We recruited 10 healthy male participants from the population 

of students at the University of Oklahoma between the ages of 22 
and 30 (Mean±SD = 25±2.3, all right handed) having no prior 
experience with air traffic control. All participants took part in 
four recording sessions that lasted for one half-hour, one hour, 
an hour and a half, and two hours, which will be referred to as 
Session 1, Session 2, Session 3, and Session 4, respectively, totaling 
40 data collection sessions. However, data from Participant 1 
(Session 3) and Participant 6 (Session 3) were excluded due to 
high noise levels that could not be improved by pre-processing 
using filtering and artifact rejections. All participants took part 
in the study after giving informed consent according to the 
University of Oklahoma Institutional Review Board standards. 
Participants were compensated monetarily for their time.

Experimental Protocol
The Minicog Rapid Assessment Battery (MRAB) (Shephard, 

Kho, Chen, & Kossyln, 2006) and the C-Team low-fidelity air 
traffic control simulator (Bailey et al., 1999) were used to study 
behavioral changes associated with the time-on-task effect (or 
mental fatigue). Participants performed MRAB cognitive tests 
before and after recording sessions to identify cognitive perfor-
mance changes associated with time on task. The MRAB had 
measures of seven cognitive tasks, including Vigilance, Filtering, 
Divided Attention, Mental Rotation, Working Memory, Cogni-
tive Set Switching, and Perceptual Reaction.

Vigilance, filtering, and divided attention tasks were used to 
test the ability of a participant to focus on specific information 
in order to conduct a task efficiently. The Vigilance task assesses 
the ability to maintain continuous attention to specific events, 
the Filtering task assesses the ability to filter out unwanted in-

formation, and the Divided Attention task assesses the ability 
to maintain attention while processing two different types of 
information. Working Memory investigates the ability to retain 
information and respond to an event based on information from 
previous events. Cognitive Set Switching assesses the ability 
to switch among cognitive sets to process suddenly appearing 
stimuli in a sequence displaying the same type of information. 
Mental Rotation requires forming judgments about two geo-
metrical shapes to determine whether they are mirrored images 
or identical images with rotation. Finally, the Perceptual Reac-
tion Time task is used to check on quickness and accuracy as 
the stimulus shows up at different locations and corresponding 
keys must be pushed.

Performance data recorded by the C-Team task were used for 
the continuous evaluation of fatigue effects with time on task. 
The C-Team task used for the present study is shown in Figure 
1(a). C-Team was run on a PC with Windows operating system, 
and the operational interface was displayed on a 22-inch monitor. 
The participants clicked on appropriate controller tabs using a 
pointing device (i.e., computer mouse) to control aircraft. The 
participants were required to activate and navigate aircraft that 
appeared on the display screen at the rate of three per minute. 
Their goal was to get aircraft to their respective airports or exit 
gates, as defined on each aircraft data block. The number of 
aircraft requiring activation was maintained at a constant rate 
for the entire task. The scenarios were developed in such a way 
that airport orientation changed every five minutes with a no-
tification that occurred one minute prior to the change through 
auditory feedback. Proximity warnings were issued whenever 
aircraft got too close to the boundary edges, airport edges, other 
aircraft, and restricted areas. Failure to respond to these warnings 
resulted in a crash.

Figure 1(a) shows the C-Team task display screen, with the 
aircraft heading to the exit B along the routing path, represented 

 
Figure 1 (a). C-Team task display screen showing the aircraft (green arrow), airports (green 
circles with center runway), restricted area (red circle) and the route traversed (red line) to 
reach the exit B. (b) Accumulated routing paths, representing the task complexity, and the 
trajectory used by participants for air traffic control. 
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by the red line. The delay encountered in activating an aircraft 
upon its appearance on the C-Team display screen is called 
response time. Routing time, the time taken for the aircraft to 
reach the exit B, is defined as the amount of time between the 
appearance of aircraft on the screen and final time to reach the 
target exit/airport. Figure 1(b) shows the accumulated routing 
paths of all aircraft from Participant 2, Session 4. These path 
maps show the complexity in routing introduced by the central 
restricted area and the changes in aircraft orientation, which are 
indicated by the accumulated red lines around the airport in all 
four directions. Upon completion of the task, the performance 
data were saved to a replay file for further processing during the 
data analysis procedures.

The experimental protocol had two phases: training and 
recording. During the training phase, participants were briefed 
on the use of the MRAB software and performed four MRAB 
practice sessions on different days within a week. After the MRAB 
practice sessions, participants underwent three training sessions 
of C-Team to get them acquainted with the task requirements 
and to develop their own strategies for controlling aircraft. In 
the recording phase, participants took part in four sessions, 
each of which was conducted on different days. Each recording 
session consisted of initial MRAB test, followed by the C-Team 
air traffic control task, with simultaneous EEG recording, and 
final MRAB test. Four C-Team sessions varied by 30 min  (30 
min, 60 min, 90 min and 120 min).

EEG Data Acquisition
EEG data were collected using a 128-channel, high-density 

system at a sampling frequency of 250 Hz. During recording 
sessions, participants were advised to minimize facial move-
ments and eye blinks to reduce artifacts. An impedance check 
for the electrode cap was performed at 60-minute intervals 
during sessions 3 and 4 to keep the impedance lower than 50 
KΩ to ensure high signal-noise-ratio (SNR) in EEG data. The 
impedance check lasted for 5 to 10 minutes in all participants.

Performance Data Analysis
The performance data obtained from the C-Team replay 

files and MRAB log files were backed up after the successful 
completion of each session. Response times and errors were 
computed for MRAB tasks that were performed before and after 
the C-Team task. We statistically compared response times and 
numbers of errors from pre-task and post-task MRAB tests. To 
further evaluate the individual cognitive test performance in 
MRAB, we established a baseline performance, averaged from 
the MRAB data obtained during three C-Team training sessions, 
which showed stable performance after the initial eight MRAB 
practice sessions. We then compared the performance of MRAB 

tasks from the recording sessions with the established baseline to 
study the effects of fatigue associated with time on task.

C-Team data were obtained from the replay files to compute 
performance measures such as response time, routing time, 
number of crashes, and number of warnings. The crash count 
was a composite of the number of mid-air collisions, not be-
ing lined up with the runway at the time of landing, colliding 
with boundaries of C-Team airspace, and entering a section of 
restricted air space. A proximity warning was issued prior to a 
crash. The C-Team data were segmented into 10-minute inter-
vals, and average values of response time and routing time were 
computed within each interval. Parameters such as crashes and 
proximity warnings were also computed for the respective seg-
ments. A reference segment with the best performance within 
the first 50 minutes of the session was identified as the baseline 
segment. Two-tail t-tests, using a significance level of p < 0.05 
compared to the baseline segment, were then performed to 
identify the segments showing significant change in response 
time and routing time for Sessions 3 and 4.

EEG Data Analysis
EEG data were manually inspected for channels with higher 

voltage fluctuations over the course of recording and were 
marked as bad channels. EEG data on the marked bad channels 
were then interpolated from neighboring channels through the 
bad channel replacement tool in EGI net station 4.2 (Electrical 
Geodesics, Inc., Eugene, OR). The procedure was reasonable 
since the electrical field in the neighboring areas usually had 
continuous distribution due to the volume conductance effect. 
After bad channel replacement, a band-pass filter of 0.5 - 100 
Hz was applied to the data.

The C-Team task required frequent hand movements due 
to the use of a computer mouse to perform control actions. 
This was accompanied by frequent head movements, which 
created artifacts in EEG data (i.e., electromyography, EMG). 
These artifacts usually showed temporary high-amplitude, high-
frequency components, and many EMG signals had localized 
spatial distributions over the scalp. The artifacted EEG data were 
identified by visual inspection and removed using the Fieldtrip 
software (Oostenveld, Maris, & Schoffelen, 2011). 

EEG data were then segmented into 10-minute intervals on 
which further analyses were carried out. To remove the artifacts 
introduced by the impedance check on Sessions 3 and 4 data, 
we performed an independent component analysis (ICA) using 
EEGLAB software (Delorme & Makeig, 2004) on continu-
ous EEG data before segmentation. During this process, the 
EEG data were applied with an extended infomax ICA, using 
Runica (Makeig, Jung, Bell, & Sejnowski, 1996) from the 
EEGLAB toolbox. 
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We set the number of independent components (ICs) to 64 and used the ADJUST (Mognon, Jovicich, Bruz-
zone, & Buiatti, 2010) plugin from EEGLAB tool to remove artifacts related to eye movements and generic 
discontinuities (Figure 2(a)). 

 
 
Figure 2 (a). Identified artifact components after running ADJUST artifact rejection method in EEGLAB. 
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Figure 2 (b). Impedance check induced artifact removal based on the visual inspection of power spectral 
plots. The components impacted by impedance check that were identified and removed are marked using 
red boxes. 

Components affected by the impedance check were visually 
identified based on the power spectral density (PSD) of each (in 
the Whisker plots of data from 10-minute segments), as shown 
in Figure 2(b). The artifacted components are indicated by red 
boxes. By removing these artifact ICs, the “artifact-free” EEG 
data were reconstructed from the residual EEG data.

The above processed data were sectioned into 1-second ep-
ochs, and a short-time window Fast Fourier Transform (FFT) 
was applied with a frequency resolution of 1 Hz to obtain 
spectral powers of three frequency components, which were 
theta (4 Hz - 8 Hz), alpha (8 Hz - 12 Hz), and beta (12 Hz - 30 
Hz) components (Figure 3). To determine the time frequency 
representations using FFT, we utilized a multi-taper approach 
(Percival & Walden, 1993) with fixed window size of 0.25s and 
50% overlap. Segments were windowed using a Hanning window 
(Blackman & Tukey, 1959), and power spectra were computed 
and averaged over the resulting eight equal segments in 1 second.

Non-Parametric Statistical Analysis
To identify significant changes in mental state due to time on 

task, a non-parametric statistical method (Maris & Oostenveld, 
2007) was used. This method combines the merits of statistical 
testing and non-parametric techniques to handle the multiple 
comparison problems in EEG data. In this analysis, we statisti-

cally compared the first 10-minute segment with the remaining 
10-minute segments over time. The comparison study resulted in a 
sequence of maps that illustrated the EEG spectral power changes 
as a function of time. The t-statistic value for each comparison 
was computed and the threshold was set at an alpha value of 
0.05. T-values from all EEG channels were grouped into clusters 
based on the spatial adjacency of electrodes. The cluster-level 
test statistic was computed as the sum of t-values from a cluster. 
Then we used the non-parametric method to find the significant 
clusters using a permutation procedure. The procedure involved 
combining data from two 10-minute segments (which are com-
pared) into a single dataset and then randomly drawing samples 
from the combined dataset to form two new groups of data of the 
original size. This procedure is known as random partitioning. 
The cluster-level test statistic was then computed for these two 
randomized partitions in the same manner as for the original 
10-minute segment data. Repeating this random partitioning an 
infinite number of times results in a permutation distribution 
in which the p-value is called the permutation p-value. Due to 
practical constraints, the permutation p-value was obtained using 
a Monte Carlo estimate, which was obtained by repeating the 
random partitioning a large number of times (e.g., 1,000). A 
permutation p-value was obtained that was the proportion of a 
random partition that had an observed cluster-level test statistic 
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Figure 3. Computation of EEG PSD. (a) 10-second EEG signals from one channel from recordings; (b) 
EEG signals in a resolution of one second used to perform the FFT calculation; (c) One-second EEG 
signals multiplied by a sequence of Hanning windows each of 0.25-second length and 50% overlap; (d) 
Resulted eight periodic tapers from the operation of Hanning. windows; (e) PSD from each taper; (f) EEG 
PSD obtained by averaging PSDs from eight tapers. 
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greater than the cluster-level test statistic from 
original segment data. If this p-value was less 
than the set critical alpha value (< 0.05), we 
concluded that the two 10-minute segments 
were significantly different. 

The above-mentioned non-parametric 
statistical method was implemented in the 
Fieldtrip software (Maris & Oostenveld, 
2007), and its graphic illustration is displayed 
in Figure 4. A t-statistic was then plotted out 
at each electrode indicated by three shades of 
colors to illustrate the change in power spectra 
over human heads as a function of time. A blue 
color represented a significant increase, while 
a red color indicated a significant decrease. A 
green color indicated no change in the power 
spectra compared to the first 10-minute seg-
mented data (see Fig. 4 for examples). The 
significant change in EEG spectral powers, 
identified by the implementation of the sta-
tistical test, indicated a possible mental state 
transition, as discussed below.

Mental State Analysis
Mental state was determined based on 

the activation of the neural networks, which 
were responsible for the neural computation 
performed by the human brain. For example, 
mental states have been studied as microstate 
and transition between different microstates as 
an indicator of a functional status change in 
the human brain (Pascual-Marqui, Michel, & 
Lehmann, 1995). Such transitions of mental 
states, or microstates, are reflected in rhythmic 
EEG signals. In other words, EEG measures 
the signal produced by the synchronous 
discharging population of cortical neurons, 
which are shifted under different mental states. 

To determine the change in brain activity, 
we selected the channels corresponding to 
the significant change from non-parametric 
analyses and searched for the change in the 
absolute spectral power over time in a specific 
frequency band (i.e., the theta, alpha, and beta 
bands). Specifically, the pattern in the median 
of EEG spectral powers from10-minute seg-
ment data along the time axis (i.e., 0.5, 1, 
1.5, or 2 hours) was assessed. This indicated 
the mean level of activity at each frequency 
band. We then searched for pattern shifts in 
the curves for medians as indicators of the 
mental state transition, as studied by Pascual-
Marqui et al., 1995. We hypothesized that the 
prominent shift in EEG spectral power data 
was correlated to the time-on-task effect. We 

 
Figure 4. Illustration of cluster-based permutation test for spectral powers 
on channels between two 10-minute EEG data. 



8

also evaluated these features using other types of data, such as the 
performance data (see the section below). The time exhibiting the 
significant prominent shift was noted as the transition time (TT). 

Correlation Analysis
To find the association between the EEG patterns indicative 

of mental fatigue and cognitive performance, we compared 
performance measures such as response time and routing time 
with EEG spectral power data over time. Response time and 
routing time represented the change in performance, while 
EEG spectral power represented the change in mental state due 
to the time-on-task effect. We compared the results obtained 
from non-parametric statistical testing to identify the change in 
spatio-temporal patterns of EEG spectral powers and changes 
in C-Team performance measures over time.

RESULTS

MRAB Results
Overall results from the MRAB tasks showed stable perfor-

mance with no significant changes in reaction time both before 
and after sessions of any length (i.e., 0.5, 1, 1.5, and 2 hours). 
The comparison study against baseline performance using t-tests 
showed similar performance between pre-task and post-task tests, 
with the exception that there were observed differences for the 
Vigilance and Filtering tasks. However, these differences between 
pre-task and post-task were not consistent among participants 
at the level of group analysis. Hence, no conclusive evidence 
of time-on-task effects was indicated by the performance data 
from the MRAB tasks. Meanwhile, the performance measures 
obtained from C-Team showed significant effects of time on 
task, as discussed below.

C-Team Results
C-Team performance data were used to evaluate the time-

on-task effects during the task scenarios. In general, when time 
on task became longer, all participants had increased response 
times in activating aircraft and increased routing times to reach 
destinations. It appeared that it took about 20 to 30 minutes 
for participants to reach stable performance after beginning the 
task. This result was also suggested by the EEG data and will be 
discussed in the next section. 
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Figure 5 C. Team performance measures, reaction time, and routing time are 
plotted over time to show the significantly deteriorating performance happening 
around 60 - 80 minutes for session 2 (blue), session 3 (red), and session 4 
(green) from participant 3. 

 

Figure 5 shows the response times and routing times from sessions 2, 3, and 4 of 
Participant 3. During the first 60 minutes, response times and routing times followed a 
similar pattern for all three sessions. That is, there was an initial drop in times, followed by 
a gradual increase toward the 60-minute mark. Following the 60-minute mark, significant 
changes were observed in Sessions 3 and 4 response times and routing times. These changes 
were evident for all participants.
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Tables 1 and 2 present the statistical results via comparing 
10-minute segment data with the baseline segment data for 
Sessions 3 and 4, respectively. As shown by the t-test results, we 
inferred that there was a significant increase in response time and 
routing time that occurred approximately between 60 and 80 

minutes. Following the 60-80 minute region, some participants, 
such as Participant 3, exhibited momentary recovery in terms of 
performance, followed by a significant decline in performance. It is 
possible that these participants noticed their performance decline 
and were able to temporarily return to baseline performance.

Table 1. Response time significance level between reference interval (C*) and rest of the time intervals 
(T#) obtained from C-Team task of all participants (P) for session 4. 

 

Note: The values italicized and underlined are identified to be significantly increasing ones based on the t-test 
conducted with significance level of P < 0.05. 

     Time Intervals    

 C* 

 
T3 
 

T4 
 

T5 
 

T6 
 

T7 
 

T8 
 

T9 
  

T10 
 

T11 
 

T12 
 

 
P1 T4 - - 0.372 0.117 0.074 0.131 0.368 0.775 0.108 0.294 
P2 T4 - - 0.320 0.220 0.009 0.089 0.385 0.150 0.699 - 
P3 T5 - - - 0.023 0.000 0.011 0.107 0.000 0.107 0.506 
P4 T2 0.130 0.021 0.486 0.119 0.016 0.095 0.079 0.111 0.023 0.793 
P5 T5 - - - 0.065 0.084 0.000 0.069 0.004 0.861 - 
P6 T5 - - - 0.161 0.010 0.702 0.009 0.298 0.154 0.286 
P7 T2 0.358 0.217 0.462 0.053 0.013 0.025 0.634 0.104 0.094 0.696 
P8 T2 0.513 0.083 0.632 0.068 0.244 0.014 0.261 0.160 0.155 0.502 
P9 T4 - - 0.770 0.291 0.291 0.160 0.536 0.210 0.613 0.003 
P10 T2 0.457 0.389 0.445 0.344 0.781 0.415 0.520 0.120 0.509 0.002 

Table 2. Routing time significance level between reference interval (C*) and rest of the time intervals (T#) 
obtained from C-Team task of all participants (P) for session 4. 
 
  Time Interval 

  C* 

 
T3 
 

T4 
 

T5 
 

T6 
 

T7 
 

T8 
 

T9 
  

T10 
 

T11 
 

T12 
 

P1 T4 - - 0.795 0.183 0.009 0.118 0.205 0.466 0.253 0.580 
P2 T5 - - - 0.591 0.201 0.178 0.861 0.672 0.661 0.260 
P3 T5 - - - 0.153 0.000 0.199 0.222 0.011 0.512 0.549 
P4 T5 - - - 0.578 0.349 0.692 0.429 0.913 0.784 0.080 
P5 T5 - - - 0.521 0.729 0.054 0.553 0.706 0.601 0.381 
P6 T5 - - - 0.336 0.006 0.044 0.084 0.905 0.071 0.798 
P7 T5 - - - 0.591 0.178 0.135 0.980 0.817 0.323 0.315 
P8 T5 - - - 0.628 0.433 0.108 0.788 0.466 0.410 0.698 
P9 T4 - - 0.600 0.310 0.450 0.136 0.792 0.610 0.904 0.377 
P10 T1 0.270 0.052 0.008 0.013 0.130 0.093 0.632 0.251 0.726 0.326 

Note: the values italicized and underlined are identified to be significantly increasing ones based on the  
t-test conducted with significance level of P < 0.05. 
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Performance decrements were also observed in other measures, 
e.g., numbers of crashes and proximity warnings, from Session 1 
(and 2) and Session 3 (and 4) (Table 3). Both the average num-
ber of crashes and proximity warnings were significantly higher 
in Sessions 3 and 4 than in Sessions 1 and 2, averaged over all 
participants. This was likely because Sessions 3 and 4 were of 
longer duration and, hence, participants had more opportunity 
to experience crashes and proximity warnings. However, it was 
also interesting to note that the number of crashes and proximity 
warnings were slightly lower in Session 4, as compared to Session 
3. This may have been due to some sort of recovery effect, such 
as described in the previous paragraph. 

EEG Results From Spatial Analysis
To spatially represent the change in power spectra over 

different segments, we used scalp maps and three shades of 
colors (Fig. 6). All changes are referenced to the first 10-minute 
segment. Areas marked in blue indicate a significant increase 

in EEG power spectra. Areas marked in red show a statistical 
decrease, and areas marked in green represent no statisti-
cally significant change. Notice that the blue areas follow 
an increasing pattern across time, and thus are thought to 
represent a time-on-task effect. Areas marked in red do not 
exhibit a consistent trend across time and, thus, are thought 
not to be a useful marker for a time-on-task fatigue effect. 
Because of this, we focus subsequent discussion only on the 
blue regions.

The results from the non-parametric analysis suggest sig-
nificant and consistent changes over time in power spectra in 
theta, alpha, and beta frequency bands, as shown in Figure 
6. These power spectral changes were observed by comparing 
the first 10-minute segment to the subsequent 10-minute 
segments in sequence, which were localized to frontal mid-
line and parietal areas. Further, to illustrate the consistency 
of these results across sessions, we have presented the alpha 
power spectral plots obtained from all four sessions. 

Table 3. Summary of C-Team task performance measures for all the sessions. 

     Mean     
 Response time Routing time Crashes Warnings Active plane/second 
Session 1 4.26 29.72 1.40 2.00 1.25 
Session 2 5.08 31.56 3.67 3.33 1.31 
Session 3 5.78 31.23 6.67 9.80 1.24 
Session 4 4.91 30.31 4.50 6.80 1.26 

 

 
 

Figure 6. Scalp maps plotted out from the non-parametric statistical test results showing significant 
changes in EEG power spectra across alpha (a), beta (b) and theta (c) over time, comparing the first 10-
minute segment with subsequent segments, and resulted significance levels are color coded and 
displayed. Red indicates a significant decrease, blue indicates a significant increase, and green means 
no significant change. 
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Figure 7 shows the scalp maps that indicated a significant 
change in alpha power spectra across all sessions from Partici-
pant 9. A similar pattern was also observed for theta and beta 
bands that are not shown here. As stated earlier, a significantly 
increasing pattern in alpha band was observed over time to be 
localized within the frontal and parietal areas along the midline 
for Sessions 2, 3, and 4. Session 1 showed random changes 
similar to those appearing at the beginning of the longer ses-
sions, which are thought to be the result of temporary changes 

in brain activity not related to the time-on-task effect. Due 
to this observation, the performance data from Session 1 (the 
30-minute activity) was not used to evaluate the time-on-task 
effect. Instead, performance data from Sessions 2, 3, and 4 were 
used. Results from the non-parametric analysis for varied session 
lengths provided more information on increasing patterns of 
power spectra with time-on-task and identified spatial regions 
(along the midline from the frontal area to the parietal area over 
the head) associated with fatigue. 

 
 
Figure 7. Scalp maps plotted out from the non-parametric statistical test results showing significant 
changes in EEG alpha power spectra over time on obtained from session 1 (a), session 2 (b), session 3 
(c), and session 4 (d) comparing the first 10-minute segment with subsequent segments, and resulted 
significance levels are color coded and displayed. Red indicates a significant decrease, blue indicates a 
significant increase, and green means no significant change. 
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Indicators of Mental State Transitions
To determine mental state change, we selected representa-

tive channels from the spatial areas that are identified from 
the non-parametric statistical analysis and increased EEG 
spectral powers over the alpha band. Figure 8(a) shows the 
selected representative channels, indicated by red dots over 
the scalp map, all of which appear on the midline from frontal 

area to parietal area. Figure 8(b) shows the Whisker plots of 
absolute power data in a resolution of 10 minutes, obtained 
from the representative channels of all participants in Ses-
sion 4. The grey bars after the 60-minute mark represent the 
impedance check interval, during which no EEG data were 
obtained. From these Whisker plots, one can infer that there 
was a steady increase in EEG power spectra with significant 

(a) 
 

 
 

(b) 
 

 
Figure 8 (a). Scalp electrode locations selected as the representative channels used for mental 
state transition time computation. (b) Whisker plots of EEG alpha power spectra used to identify 
the transition times of mental states. The grey bars represent the time durations used for 
impedance check. 
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changes occurring from 60 to 80 minutes, which varied within 
different sessions and among participants. In general, most 
participants showed this increasing pattern in alpha power 
spectra. However, there were individual variations, such as 
observed with Participant 8. Despite individual difference in 

variation, the overall pattern of increasing EEG power spectra 
and spatial distribution patterns were consistent with the 
results from our previous study (Dasari, Crowe, Ling, Zhu, 
& Ding, 2010 Fig. 9), thus suggesting stable results across 
multiple studies.

(a) 
 

 
 

(b) 
 

 
 
Figure 9 (a). Results from our previous study showing the scalp electrode locations for representative 
channels used indicated by red dots. (b) Whisker plots of EEG alpha power spectra used to identify the 
transition times of mental states. 
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Figure 10 shows the median values of absolute spectral power 
data for every 10-minute segment from Sessions 3 and 4. We 
estimated the transition time (TT), defined as the indicator 
for mental state shift, as discussed above, using the following 
procedures. First, from these plots, it can be observed there was 
a prominent spectral power shift occurring between 50 and 90 
minutes in most participants. We broadened this window to be 
from 40 to 100 minutes and searched for the maximal changes 
between neighboring segments in this range as TTs, which are 
marked by the vertical lines in Figure 10 for different partici-
pants. This prominent shift in EEG powers was identified and 

 
 

Figure 10 (a). Increasing patterns of median EEG power spectra over time from alpha, beta, and theta 
bands from session 4 (a) and session 3 (b) data with significant changes occurring around 60 - 80 
minutes. Black lines represent the transition time (TT) for mental states. 

 

Table 4. Summary of the mental state transition time identified from EEG spectral power data. 

 Participant 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
 Mental State Transition Time (minutes) 
Session 2 -- 60 -- 60 60 -- -- -- 60 60 

Session 3 -- 60 75 60 60 -- 74 77 60 50 

Session 4 73 77 86 60 80 94 60 50 80 60 
 
Note: The blank fields indicate no significant change observed for those participant sessions. 

computed as TTs for all participants and sessions (summarized in 
Table 4). Observe that most transition times are found between 
60 to 80 minutes. 

Correlation Analysis
The neurophysiological pattern identified in EEG to represent 

the time-on-task effect (or mental fatigue) depicts a visually ob-
served correlation with cognitive functional decrements observed 
in C-Team task performance. Fluctuations in performance, 
represented by response time and routing time, correspond with 
transition times identified from EEG spectral power data over time.
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Figure 11 shows an example of the visually observed correlation between response time and the spatial maps 
obtained using the non-parametric method from Participant 10, Session 4. The performance decrements are well-
captured by physiological  patterns from EEG at both 60 and 100 minutes where the frontal midline region of the 
brain exhibits increased alpha EEG powers as compared to neighboring segment data (i.e., deep blue color means 
more changes than light blue color).

 
Figure 11. Correlation of reaction times with spatial patterns showing significant changes in EEG alpha 
power spectra localized to frontal midline region of the brain, from Participant 10, session 4. 
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Figure 12 shows an example from Participant 2, Session 4, in which the mean response time is shown with 
the median alpha EEG powers over time. The plots show that slow response times can be visually correlated to 
increasing patterns of EEG alpha power. The EEG alpha power pattern also follows the response time pattern when 
fast response times appear at the beginning of the session (due to the alertness) and later in the ninth 10-minute 
segment (due to the temporary recovery from mental fatigue). The improved response times at the end of session 
may be attributed to the expectation of finishing the task soon. A similar result is also observed in all participants 
and sessions. In some participants, such phenomena are also observed to be localized within the parietal region.

 
Figure 12. Correlation of alpha median power obtained from EEG power spectral analysis, with reaction 
time performance over time from Participant 2, Session 4. 
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For the comparison at the group level, Figure 13 shows the 
histogram of the number of participants in sessions 3 and/or 4 
(combined) that displayed a significant departure from baseline 
response times and routing times. Also included in the histogram 
are TTs from all participants. Each bar represents the number 
of participants falling under the corresponding 10-minute time 
window, where each red bar represents TT from EEG. Each green 
bar shows the significant response time change, and each blue 
bar indicates a significant routing time change. Notice that the 
histograms for TT, response time, and routing time are mostly 
clustered in the time window from 50 to 90 minutes and peak 
between 60 to 70 minutes. Since the time markers for signifi-
cant changes in response time, routing time, and power spectral 
changes were mostly found after 60 minutes, data from Sessions 
1 and 2 were not considered for this correlation analysis.

DISCUSSION

In this study, we analyzed the association of EEG patterns 
related to mental fatigue, with deteriorating cognitive perfor-
mance over time while participants performed a simulated air 
traffic control task. The low-fidelity air traffic control task used 
for the present study provided a more realistic approach in as-
sessing performance changes, as the task scenarios mimicked 
some of the real-world air traffic control tasks. Furthermore, 
the nature of observations of the time-on-task effect we made 
in the present study was more spontaneous and realistic, 
compared to the monotonous single-event tasks used in other 

studies (Kramer, Sirevaag, & Huges, 1988; Murata et al., 2005; 
Trejo & Mullane, 1995). 

The realistic nature of the task gives us a better understand-
ing of mental fatigue and its impact on cognitive performance. 
For instance, response time (i.e., aircraft activation time) in the 
C-Team task represents the level of alertness in monitoring the 
appearance of aircraft, while the routing time reflects the plan-
ning and decision-making activities necessary for performing air 
traffic control tasks. Response time and routing time obtained 
from task performance data in the present study show signifi-
cant change attributed to the effects of time-on-task fatigue that 
mostly occurred around 60 to 80 minutes.

EEG spectral power studies show significant alpha and theta 
activity changes over time that are believed to be associated with 
cognitive functional changes (i.e., mental state changes). Non-
parametric statistical tests implemented on EEG data show that 
these significant changes are localized to the midline areas from 
the frontal lobe to the parietal lobe of the brain. The concept of 
mental state transition was introduced, and the times for such 
transitions are used to indicate the time markers for the devel-
opment of mental fatigue, or the time-on-task effect. Obtained 
transition times from EEG, analyzed by the processes discussed 
above, indicated prominent changes in EEG data indicative of 
mental state that occurred approximately around 70 minutes. 
These patterns were consistent in sessions from the same par-
ticipants and also consistent from different participants. It is 
noted that the way to identify transition times study is through 
the visual inspection of general patterns among all participants, 

 
Figure 13. Distributions of number of participants showing significant changes in reaction time (green bar), 
routing time (blue bar), and mental state transition times (red bar). 
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which was not robust and optimal. More quantitative measures 
such as medians, changes in medians, variances, and changes in 
variances of EEG power spectra in a finer resolution (e.g., 5 min-
utes) can be further explored to develop more robust measures.

Individual and group analyses of mental transition times and 
performance changes produced meaningful visual correlations. 
Mental state transition times were well correlated with the slow 
response times and increased routing times. Such results suggest 
that patterns obtained from EEG data are reliable indicators for the 
development of mental fatigue and associated cognitive functional 
decrements. In many examples, EEG rhythmic powers in alpha 
bands (also in theta and beta bands) fluctuate with the performance 
data (Figures 11 and 12), which suggests that EEG rhythmic pow-
ers are promising, reliable indicators in real-time monitoring and 
can even be used to predict human performance.

During our study, we also observed the mental effort deployed 
by participants to momentarily improve their performance after 
first experiencing a reduction in performance due to the onset of 
mental fatigue. Examples for Participant 8 are illustrated in Figures 
11 and 12, as well as in Figure 8(a). After the identified mental state 
transition times, the performance of participants show large fluctua-
tions. The initial recovery in performance during these fluctuations 
suggests that the individual may be attempting to counteract the 
mental fatigue effects by increasing mental effort. However, the 
increase in mental effort appeared to be insufficient to maintain 
the desired performance level and was followed by a subsequent 
decline in performance. It is possible that multiple episodes of 
recovery from mental fatigue may be observed under more taxing 
conditions from those encountered in the experiment. Even though 
this is speculation, we are certain that future researchers can take 
advantage of this work and proceed forward to understand how 
increases in mental effort made after onset of mental fatigue would 
affect brain functions and subsequent behavioral performance. 

One limitation that we experienced during this study was the 
impedance check at the 60-minute time mark. We conducted 
the impedance check to make sure the skin-electrode interface 
impedance was lower than 50 KΩ in order to maintain a high 
signal-noise-ratio in recordings. Due to this impedance check, 
10 minutes of data were lost at the time (i.e., 60 minutes), which 
is around the identified moment for the critical development of 
mental fatigue. Furthermore, the impedance check also impacted 
the alertness level of participants since they were presented with a 
new event that was not related to the task, even while instructions 
had been given to participants to ignore the impedance check. To 
remove artifacts, a post-recording signal processing technique, i.e., 
ICA, was used (Makeig et al., 1996). An alternative possible solu-
tion to this issue is the use of dry electrodes for long hours of EEG 
recording (Justin, Jason, James, & Glenn, 2009). Furthermore, 
the MRAB results in the present study did not show consistent 
differences among pre-task and post-task cognitive tests, which 
suggests that MRAB was possibly not sensitive in identifying the 
time-on-task effect. Other possible reasons for this could have 
been the short nature of MRAB tasks and the variety of small 
tasks in MRAB that may help participants become engaged after 
performing long, monotonous C-Team tasks.

Finally, the present study serves as a template for conducting 
high-fidelity simulation experiments involving actual air traffic 
control participants. We demonstrated that mental state transi-
tions related to time on task fatigue could be identified while 
participants performed low- fidelity aircraft separation tasks 
involving changes in speed, heading and altitude. The regions 
of the brain associated with performing these tasks are likely to 
be the same regions activated during actual air traffic control 
operations. However, the intensity and duration of mental state 
transitions are likely to be different. Therefore, before any gen-
eralization can be made to the air traffic control population, it 
will be important to replicate this study under high fidelity air 
traffic control simulation conditions.
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